The role of constructed wetlands in the conservation of biodiversity: a case study on birds diversity in Al-Hadba treatment plant, Tripoli, Libya

Aya Algadry¹, Esra'a Dorman¹, Essam Bourass² & Khaled Etayeb¹

¹Zoology Department, Faculty of Science, The University of Tripoli, Al-Fornaj, P.O.Box: 13227 Tripoli, Libya

²Environment General Authority, EGA-Libya

*Corresponding author, e-mail: khaledetayeb@yahoo.com

ABSTRACT

Urbanization as a result of human population increase has led to the depletion of natural resources and the destruction of natural wetlands. In contrast, the establishment of treatment and purification of plants has led to the creation of new wetlands (constructed wetlands). Although these new ecosystems established for the treatment of municipal wastewater, and subject to operational and maintenance disturbances, many studies have demonstrated that numbers of bird species using such sites are reasonably higher than expected. The present study has investigated the role of Al-Hadba treatment plant in the conservation of biodiversity and the diversity of birds in particular. This paper emphasizes that, this area is one of the stopover sites for migrating birds, especially aquatic birds, ducks and long-legged waders. A total of 74 species were recorded during the period of study. Moreover, this study observed the breeding of four species; Marbled Teal *Marmaronetta angustirostris*, Cattle egret *Bubulcus ibis*, Moorhen *Gallinula chloropus*, Black-winged stilt *Himantopus himantopus*. Some factors such as drought, predation and disturbance were affecting the abundance of individuals at the study area.

KEY WORDS

Constructed wetlands; aquatic birds; breeding and stopover.

Received 20.06.2022; accepted 01.08.22.2020; published online 18.09.2022 - Proceedings of the 6th International Congress "*Taxonomy, Speciation and Euro-Mediterranean Biodiversity*", October 11th-13th, 2019 - Sofia (Bulgaria)

INTRODUCTION

Wetlands are defined as an area that is permanently or seasonally wet, or during the year running or stagnant, fresh or saltwater, such as swamps, marshes, ponds, shallow water plains, dams, springs, rivers, lakes, valleys, industrial ponds, etc. (Moore, 2008). Wetlands are transitional habitats and the most productive ecosystems in the world compared to land-based rainforests and coral reefs

in aquatic environments, occupying 6% of the world's land area, i.e. 5.3 to 8.6 million square kilometers (Ashkanani, 2013). The importance of wetlands is due to the fact that they are unique ecosystems in terms of their biological diversity and their renewable natural resources (many species of flora and fauna), as well as valuable and important habitat for the survival and nesting of many species of birds, especially endangered species (Sheldon et al., 2005; Duma, 2011). The importance of wetlands has long been disregarded because of the lack of

628 Aya Algadry et alii

knowledge of many features of this ecosystem. Moreover, they are used to express muddy marshes full of mosquitoes or unused land that need some improvements to be more beneficial to humans.

Natural wetlands are important ecosystems on our planet; they play a crucial role in conserving water and maintaining natural biodiversity at different levels (Zhao & Song, 2004). One of the most important and a major risk facing wetlands is urbanization, due to human population growth, which has exhausted these natural resources without proper management (Mackintosh & Davis, 2013).

Libyan wetlands are diverse from desert oases, fresh and salt water springs, salt marshes, coastal lagoons and man-made reservoirs and damps. In general, the majority of wetlands in Libya are shallow salt marshes, dry or semi-dry most of the year and sometimes connected to the sea (Sobkha) (Smart et al., 2006; EGA-RAC/SPA, 2012).

Wetlands are divided into two types: (i) natural wetlands including marshes, estuaries, swamps, lakes and oases, etc. (ii) Man-made wetlands (constructed, artificial or industrial wetlands) including dams, reservoirs and water treatment plants. However, researches and studies on the use of man-made

wetlands began in the early 1970s in Germany and then expanded significantly to the other countries of the world. Wetlands vary in size and area from several meters to several kilometers. The countries are working to create artificial wetlands and join them in water treatment plants by digging ponds and small lakes filled with water. These ecosystems have benefits in storage and water conservation as well as became important sites to attract many species of aquatic and non-aquatic birds (Roger, 1998).

There are two basic types of artificial wetlands for treatment:

- 1. Underground systems do not have permanent visible water and are designed to flow sewage through gravel under vegetation.
- 2. Water flow systems on the surface are more suitable as treatment systems called Man-made wetlands (Jabbar, 2009).

Constructed wetlands are an important environment for aquatic and non-aquatic birds, providing shelter and food as well as a good habitat for nesting and stopovers during migration. Many of the studies conducted in these ecosystems have indicated that the number of bird species is increased more than expected (Paul, 2013). However, due to the im-

Figure 1. Study area: Al-Hadba station for sewage treatment.

portant role played by wastewater treatment plants (industrial wetlands) in conserving the components of biodiversity (plants and animals) and in particular water birds, therefore, this study was conducted at the Al-Hadba treatment plant in Tripoli to learn about its role in protecting the biodiversity, especially the birds, and also for the lack of studies on such environments in Libya.

MATERIAL AND METHODS

Study area

Al-Hadba station for sewage treatment is located in the city of Tripoli in Al-Hadba area, about 10 km south to the city center (Fig. 1) at latitude and longitude (N 32, 83'.55, E13, 16'.09). The station was established in 1968 and operated in 1970, the water capacity is about 110,000 square meters during the dry season and about 300,000 square meters during the rainy season. This plant is supplying the agricultural project of Al-Hadba with water after being processed, treated and recycled. There are seven full lagoons (basins) by water pumping machines between the ponds. The lagoons are surrounded by a variety of trees and grass, as well as many reed plants. The depth of each lagoon is about 4.5-6 meters. These lagoons are adjacent to each other, separated by small corridors. During the heavy rainfall, the basins become flooded. The site in general, has large areas surrounded by green and sandy hills. The station receives a large number of cars between 30 and 40 cars per day, sometimes more than this number; cars are loaded with sewage water from houses as well as the wastewater of some factories.

Methods

The study was conducted at the wastewater treatment plant in Al-Hadba during the period from May 2015 to April 2016. During this study, the following were used: Opticron and Optolyth telescops for bird observation and monitoring. Olympus binoculars with 10x50. Field Guide for Identification of Bird Species (Svensson, et al., 2009). Canon D700 digital camera and a 70-300 mm magnification lens. Varnish caliper to take measurements of eggs. Electronic balance (0.01 g).

The area was divided according to its topography to 6 basins (lagoons) and the counting of birds was carried out in each basin, with consideration of count repetition due to the movement of birds among the lagoons. Visits were twice a week to record and monitor the numbers of waterbirds species, and sometimes three visits per week to observe the nesting, from early morning to midday and sometimes to evening. Nests were numbered during the breeding season. Moreover, the eggs of breeding birds Black-winged stilt Himantopus himantopus were measured and compared with the eggs of the nearest colony at Al-Mallaha, Maitigha airport (Salina) (Eman et al., 2017).

Data analysis

Diversity indices were used to determine the differences between the seasons. The total numbers of species and individuals were considered.

The Shannon Index. It is one of the best tests used to measure the diversity of the ecological community and the distribution of the number of individuals among the species. It is zero when the sample is represented by one species (Ludwing & Reynolds, 1988).

$$H' = \Sigma$$
 \underline{ni} Ln \underline{ni} N

The Simpson Index. It is one of the most widely used tests in ecological studies, and its values range from zero to one. The high probability indicates that the majority of the population belongs to one species, meaning that diversity is low or weak, and is expressed as follows:

$$D=\frac{1-(\Sigma n (n - 1)}{N(N-1)}$$

where n is the number of species and N is the total number of species

Sorensen's coefficients of similarity (Ss). It is used to find the similarity between the two variables and the value is limited between 0 and 1 or expressed as a percentage, the closer value to one is the greater similarity. It is expressed as follows:

$$Ss = \frac{2a}{2a+b+c}$$

630 Aya Algadry et alii

where: a = number of common species between sample A and sample B; b = number of specimens unique to sample B; c = number of species unique to sample A (Howege, 1998).

Egg size was calculated by using the following equation (Preston, 1974; Narushin, 2005):

$$V = Kv LB^2$$

where: V = size, B = width, L = length and Kv = 0.51.

A Correlation Test was used to find the relationship between egg size and egg weight.

General Linear Model (GLM) was used to find whether the brood size (the number of eggs in the nest) has an effect on the egg size.

T. Test was used to compare the egg size of Black winged stilt of this study and the nearest colony at Al-Mallaha area.

RESULTS

Depending on RAMSAR criteria, this study classified the site as number 8: water treatment areas (Sewage farms, settling ponds, oxidation basins).

During this study, a total of 8549 birds belonging to 74 species out of 29 families of aquatic and non-aquatic birds were counted (Table 1). The highest number of species was 52 species during February and the lowest was 17 in July (Fig. 2). The

highest observed number of individuals was in December (4780) and the lowest was 336 during July (Fig. 3). The highest number of species was in winter (62 species) and the lowest number was 42 species during the summer (Fig. 4). The peak of individuals was in the winter season (2265) and the lowest recorded number was 531 during summer (Fig. 5).

By using Shannon index, it was found that the highest level of diversity in spring and lowest was in summer (Table 2). While the analysis of the dominance by using Simpson index showed that the highest level of dominance was in the autumn season and the lowest was in the spring season (Table 2).

Similarity index showed that the highest percentage of similarity was for autumn and winter, and the lowest level was for summer and spring (Table 3).

In this study, nesting of four species was recorded. Some of them were observed since egglaying and others were recorded through monitoring and census of chicks.

Black-winged stilt (Himantopus himantopus)

The highest abundance of this species was 70, recorded in February, where 4 chicks were found at the end of May 2015, and during April 2016, 11 nests were recorded with different brood sizes in the drying pools (Fig. 6). The total number of eggs was 47. During the monitoring, parental defensive behavior

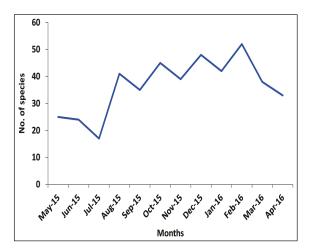


Figure 2. Number of species during the months of the study.

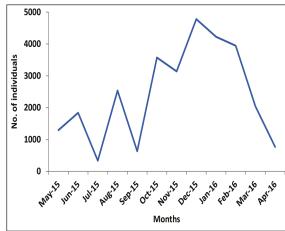


Figure 3. Number of bird individuals during the months of the study.

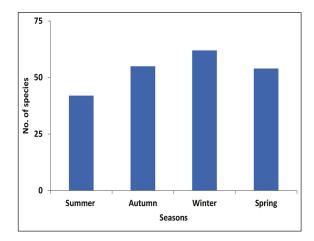


Figure 4. Number of species through the seasons of the study.

was observed (noisy sounds and broken-wing) to keep the different visitors away from the nests.

Measurements of egg were taken for 11 nests in different brood sizes, this included egg length, width and weight.

Correlation Test was used to find the relationship between egg size and weight. There was a significant relationship between them (Corr = 0.914). Therefore, it has been decided to exclude the egg weight and use only egg size to find the relationship between it and the brood size. By using the general linear model, the result shows that there was no effect of the brood size on the egg size ($r^2 = 0.038$, $df_{1,36}$, p = 0.24).

It was observed that the hatching rate was 0.13%, while nesting success was very low (0.07%). It was observed during this study that the egg size is somewhat small compared to the results of the study of Eman et al. (2017), which was conducted in Al-Mallaha at the Ma'aitiga base (Table 6). The results of this comparison showed that there was a significant difference, so, that the eggs in Al-Mallaha area were larger than those in Alhadba area (t = -7.84, df = 41, p = <0.001, Fig. 7).

Marbled teal (Angustirostris marmaronetta)

The highest abundance of this species was recorded during the months from November to January (250 indiv.). A total of 28 chicks were recorded in May 2015, and in April 2016, 25 chicks were recorded (Fig. 8).

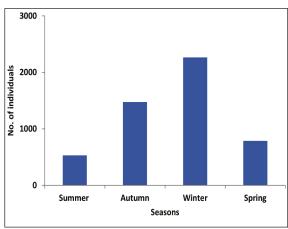


Figure 5. Number of bird individuals through the seasons of the study.

Little Grebe (Tachybaptus ruficollis)

The first record of four chicks of this species was in April 2015, and then the number reached 16 in June (Fig. 9).

Stone Curlew (Burhinus oedicnemus)

The highest abundance of this species was recorded in July 2015, with a total of 30 individuals. Only one egg of this species was observed in March 2016.

This study recorded six endangered species depend on the IUCN / Red list-2012. The study also recorded the Osprey, which is mentioned in Annex II of the Regional Activity Center for Specially Protected Areas (RAC/SPA) as an endangered species in the Mediterranean region (Table 5).

DISCUSSION

The results of this study found that Al-Hadaba wastewater treatment plant is classified according to the RAMSAR Convention for Wetlands as an artificial wetland (Manmade wetland), number 8: water treatment areas; sewage farms, settling ponds, oxidation basins. The convention has classified and identified all types of wetlands to be universal through the contracting parties and ratified countries, as well as, to avoid any misidentifications (www.ramsar.org).

No	Species	Common name	Sum	Status	
1	ANATIDAE				
	Anas platyrhynchos Linnaeus, 1758	Mallard	27	LC	
2	Anas strepera Linnaeus, 1758	Gadwall	64	LC	
3	Anas acuta Linnaeus, 1758	Northern Pintail	84	LC	
4	Anas clypeata Linnaeus, 1758	Northern Shoveler	668	LC	
5	Anas Penelope Linnaeus, 1758	Eurasian Wigeon	15	LC	
6	Marmaronetta angustirostris Menetries, 1832	Marbled Teal	1227	VU	
7	Anas crecca Linnaeus, 1758	Eurasian Teal	186	LC	
8	Anas querquedula Linnaeus, 1758	Garganey	39	LC	
9	Aythya ferina Linnaeus, 1758	Common Pochard	141	VU	
10	Aythya nyroca Güldenstädt, 1770	Ferruginous Duck	558	NT	
11	PHASIANIDAE	1 011 019 112 012 2 010 11			
	Alectoris Barbara Bonnaterre, 1791	Barbary Partridge	138	LC	
12	PODICIPEDIDAE	, ,	31	LC LC	
	Podiceps nigricollis Brehm, 1831	Black Necked Grebe			
13	Tachybaptus ruficollis Pallas, 1764	Little Grebe	74	LC	
14	PHLACROCORACIDAE		291	LC	
	Phalacrocorax carbo Linnaeus, 1758	Cormorant			
15	ARDEIDAE			LC	
	Botaurus stellaris Linnaeus, 1758	Great Bittern	11		
16	Ixobrychus minutes Linnaeus, 1766	Little Bittern	2	LC	
17	Nycticorax nycticorax Linnaeus, 1758	Night Heron	39	LC	
18	Bubulcus ibis Linnaeus, 1758	Cattle Egret	267	LC	
19	Ardeola ralloides Scopoli, 1769	Squacco Heron	76	LC	
20	Egretta garzetta Linnaeus, 1766	Little Egret	250	LC	
21	Ardea cinerea Linnaeus, 1758	Grey Heron	63	LC	
22	Ardea purpurea Linnaeus, 1766	Purple Heron	12	LC	
23	THRESKIORNITHIDAE				
	Plegadis falcinellus Linnaeus, 1766	Glossy Ibis	9	LC	
24	Platalea leucorodia Linnaeus, 1758	Eurasian Spoonbill	1	LC	
25	PANDIONIDAE Pandion haliaetus Linnaeus, 1758	Osprey	3	LC	
26	ACCIPITRIDAE				
	Circus aeruginosus Linnaeus, 1758	Western Marsh-harrier	7	LC	
27	Buteo rufinus Cretzschmar, 1829	Long-legged Buzzard	6	LC	
28	Pernis apivorus Linnaeus, 1758	Honey-buzzard	4	LC	
29	FALCONIDAE				
	Falco tinnunculus Linnaeus, 1758	Common Kestrel	11	LC	
30	Falco peregrines Tunstall, 1771	Peregrine Falcon	3	LC	
31	RALLIDAE				
	Gallinula chloropus Linnaeus, 1758	Common Moorhen	173	LC	
32	Fulica atra Linnaeus, 1758	Common Coot	563	LC	
33	RECURVIROSTRIDAE				
	Himantopus himantopus Linnaeus, 1758	Black-winged Stilt	468	LC	
34	Burhinus oedicnemus Linnaeus, 1758	Stone Curlew	35	LC	
35	CHARADRIIDAE	Little Ringed Plover	18	LC	
	Charadrius dubius Scopoli, 1786				
36	Charadrius hiaticula Linnaeus, 1758	Ringed Plover	33	LC	
37	Charadrius alexandrinus Linnaeus, 1758	Kentish Plover	5	LC	

	agor on Larn L			
38	SCOLOPACIDAE	D 11	42.4	1.0
39	Calidris alpina Linnaeus, 1758 Calidris minuta Leisler, 1812	Dunlin Little Stint	434 15	LC LC
	,		2	
40	Calidris ferruginea Pontoppidan, 1763	Curlew Sandpiper		NT
41	Tringa glareola Linnaeus, 1758	Wood Sandpiper	24	LC
42	Tringa ochropus Linnaeus, 1758	Green Sandpiper	48	LC
43	Actitis hypoleucos Linnaeus, 1758	Common Sandpiper	48	LC
44	Tringa tetanus Linnaeus, 1758	Common Redshank	73	LC
45	Tringa erythropus Pallas, 1764	Spotted Redshank	34	LC
46	Tringa nebularia Gunnerus, 1767	Common GreenShank	23	LC
47	Tringa stagnatilis Bechstein, 1803	Marsh Sandpiper	22	LC
48	Numenius arquata Linnaeus, 1758	Eurasian Curlew	5	NT
49	Gallinago gallinago Linnaeus, 1758	Common Snipe	18	LC
50	Philomachus pugnax Linnaeus, 1758	Ruff	99	LC
51	LARIDAE Chroicocephalus ridibundus Linnaeus, 1766	Black-Headed Gull	599	LC
52	Sternula albifrons Pallas, 1764	Little Tern	19	LC
53	Chlidonias niger Linnaeus, 1758	Black Tern	41	LC
54	Chlidonias leucopterus Temminck, 1815	White-winged Tern	8	LC
55	COLUMBIDAE		10	
	Streptopelia turtur Linnaeus, 1758	European Turtle-dove	19	VU
56	Streptopelia orientalis Latham, 1790	Orintal Turtle-dove	11	LC
57	APODIDAE Apus apus Linnaeus, 1758	Common Swift	133	LC
58	Apus melba Linnaeus, 1758 Alpine Swift		35	LC
59	UPUPIDAE	1		
	Upupa epops Linnaeus, 1758	Eurasian Hoopoe	131	LC
60	ALCEDINIDAE			
	Alcedo atthis Linnaeus, 1758	Common Kingfisher	4	LC
61	MEROPIDAE	European Bee-eater	105	LC
- (2	Merops apiaster Linnaeus, 1758	Constant Tour		T.C.
62	ALAUDIDAE Galerida cristata Linnaeus, 1758	Crested Lark	5	LC
63	HIRUNDINIDAE	Barn swallow	16	LC
	Hirundo rustica Linnaeus, 1758			
64	MOTACILLIDAE	Tree Pipit	21	LC
	Anthus trivialis Linnaeus, 1758			T G
65	Motacilla flava Linnaeus, 1758	Yellow Wagtail	25	LC
66	MUSCICAPIDAE Saxicola rubetra Linnaeus, 1758	Whinchat	4	LC
67	Saxicola torquatus Linnaeus, 1766	Common Stonechat	64	LC
68	Ficedula albicollis Temminck, 1815	Collared Flycatcher	2	LC
69	ACROCEPHALIDAE Acrocephalus melanopogon Temminck, 1823	Moustached Warbler	27	LC
70	PHYLLOSCOPIDAE			
71	Phylloscopus collybita Vieillot, 1817 LANIIDAE	Common Chiffchaff	32	LC
/1	Lanius excubitor Linnaeus, 1758	Great Grey Shrike	136	LC
72	LEIOTHRICHIDAE			
	Turdoides fulva Desfontaines, 1789	Fulvous Babbler	95	LC
73	PASSERIDAE Passer hispaniolensis Temminck, 1820	Spanish Sparrow	518	LC
74	FRINGILLIDAE Serinus serinus Linnaeus, 1766	European Serin	52	LC

Table 1. Bird species recorded during this study and their numbers and status.

Season	Shannon index	Simpson index
Autumn	3.18	0.92
Spring	4.91	0.39
Winter	4.7	0.76
Summer	2.79	0.52

Table 2. Diversity indices between the seasons of the study.

Seasons	Autumn	Winter	Spring
Summer	74%	69%	68%
Autumn		87%	75%
Winter			81%

Table 3. Similarity index between the seasons of the study.

This area has shown a large diversity of birds. It is a roosting area for migratory and resident birds. They utilize the plant cover for nesting and eggs laying, and also as a shelter of many components of biodiversity in the area. Thus, these types of habitats are classified as wetlands of importance in the world, which recently attracted a great attention of researchers and specialists in term of protection and conservation of biodiversity (Duma, 2011; Mackintosh & Davis, 2013; www.ramsar.org).

This study shows the importance of the area to migratory birds, where there were large numbers of birds during the seasons of the study. The total number of birds was 8549; this large number indicates the importance of the site in terms of attracting migratory birds. Although the role of industrial wetlands is to treat and store the sewage water, it is also suitable places to attract many aquatic and non-aquatic birds (Roger, 1998). Moreover, they are used as recreational areas to enjoy the nature and observe the components of biodiversity, especially the birds attracted by these ecosystems (Jabbar, 2009), providing a suitable habitat for nesting and breeding of many species of birds, particularly the endangered ones (Sheldon et al., 2005).

In terms of the number of species, a total of 74

bird species were recorded. This diversity reflects the importance of the area and its ecosystem for many birds, where it is used as a ground for nesting and suitable shelter for many species. The number of repeated field-visits has provided a greater opportunity to record more species on the site. There was a difference in the numbers during the months from October 2015 until February 2016. This is due to the timing of migration and movement of birds where they stay for periods, and then they leave the area, leading to a shortage of numbers as well as post-nesting dispersal of some of them. This site is providing food and protection because there are many trees in the area which are suitable for egglaying and protection from predators as well as the presence of many waders due to the suitable depths of the basins (lagoons) for these species. All of these characteristics make it a favorite habitat for many species of aquatic birds (Duma, 2011).

Diversity values (Shannon Index) indicated that the highest value was during the spring season. This indicates that the migration season has a significant impact on diversity in the site, and the lowest value was during the summer, when migratory species leave the area, so that only the resident species have remained. The values of dominant analysis (Simpson index) were almost similar between summer and spring with small values. This indicates that most of the species represented by several individuals are relatively identical, which means there were no large numbers of individuals belonging to certain species. The variation was significant in the autumn and winter, so that some species were represented by a large number of individuals. This was due to the increase in the number of waterbirds during migration and large numbers of certain species, for example: Anatidae (waterfowls).

During the seasons, the highest values were similar between winter and fall, due to the migration season, where winter in Europe is very cold, birds migrate to the southern Mediterranean searching of warm areas (Smart et al., 2006). Moreover, the study area provides a suitable habitat for roosting and food, which helps the birds to stay and nesting. The least similarity between the summer and spring is due to the change in climatic conditions and high temperature during the summer as well as the decrease of water level, therefore these led to a lack of food and decline of birds, resulting in a significant difference between the seasons.

	:	5 eggs	\$		4 eggs	š		3 eggs		2	2 eggs			1 egg	
	n = 1		n = 7			n = 1		n = 0		n = 2					
Alhadba 2016	L. x	W. <u>x</u>	V. x	L. x̄	W. x	V. <u>x</u>	L. x̄	W. <u>x</u>	V. x	L. x̄	W. x̄	V. <u>x</u>	L. x̄	W.	V. <u>x</u>
2010	41.4 ± 1.3	29 ±07	17.7 ±1.3	42 ±1.6	29.03 ±0.7	18.07 ±1.17	37 ±1.41	27 ±0.82	13.8 ±1.30	-	-	-	41.5 ±0.71	29 ±0.0	17.80 ±0.30
	n=			n = 24		n = 3		n = 1			n = 0				
Al-Mallaha 2014	L. x	W.	V. x	L. x̄	W. x	V. <u>x</u>	L. x̄	W. <u>x</u>	V. x	L. x̄	W. x̄	V. x	L. x̄	W. <u>x</u>	V. <u>x</u>
2014	-	-	-	43.90 ±1.26	30.9 ±0.66	21.4 ±1.32	43.40 ±1.76	31 ±0.21	21.27 ±0.82			19.20 ±3.12	-	-	

Table 4. Measurements of eggs of Black-winged stilt in Alhadba and Al-Mallaha. n = number of nests, L = length of egg, W = width of egg and V = volume.

Figure 6. Clutch size of Black-winged stilt.

Al-Hadba sewage treatment plant is very important for the nesting of some bird species. This study recorded the nesting of Black-winged stilt, Marbled teal, Little grebe and Stone curlew; and this indicates that the site provides many suitable circumstances for the nesting of these species.

This study observed a nesting of Black-winged stilt, where a total of 11 nests were monitored in different clutch size. The nesting of this species was not completely observed due to the existence of some nests in small islets in the ponds, where it was difficult to reach. However, the nesting of this species has already been recorded in Tripoli region (Etayeb et al., 2013; Eman et al., 2017).

There was no relationship between egg size and egg weight and their effect on clutch size. Although some studies, such as Blackburn (1991), indicated a significant negative relationship between clutch size and egg size in Anatidae. However, the results of the present study were in accordance with the results of Eman et al. (2017), which was conducted in Al-Mallaha wetland in Tripoli.

The recorded rate of hatching in this study is weak compared to the number of eggs, maybe due to the fact that the rate of predation was high because of the presence of many dogs in the site.

	Scientific name	Scientific name Common name		Status	Source of Status
1.	Marmaronetta angustirostris	Duck Marbled	250	Vulnerable	IUCN Red List
2.	Aythya ferina	Pochard Common	60	Vulnerable	IUCN Red List
3.	Aythya nyroca	Duck Ferruginous	170	Near threatened	IUCN Red List
4.	Calidris ferruginea	Curlew Sandpiper	2	Near threatened	IUCN Red List
5.	Numenius arquata	Eurasian Curlew	4	Near threatened	IUCN Red List
6.	Streptopelia turtur	European Turtle-dove	5	Vulnerable	IUCN Red List
7.	Pandion haliaetus	Osprey	1	Threatened	SPA/RAC annex II

Table 5. Threatened species recorded in the study area.

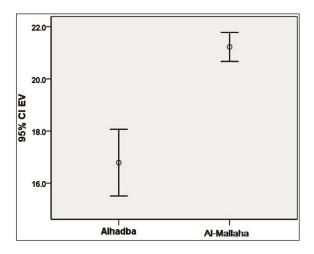


Figure 7. A comparison between the size of the eggs of Black-winged stilt in Ahadba and Al-Mallaha populations.

Black-winged stilt lay eggs in the ground nests, resulting in more exposure to predation than others, particularly, during the drought or water level decreasing (Picman, 1988; Adamou et al., 2009). Many studies have addressed the predation of either eggs or chicks and its negative impact on the overall rate of breeding success (Brown & Morris, 1994; Thorington & Bowman, 2003; Langston et al., 2007). Moreover, the most recent study in Al-Mallaha has confirmed the negative effect of disturbance and predation by dogs on the breeding success of Black-winged stilt and Little tern (*Sterna albifrons*) (Eman et al., 2017). Another reason is due to the immersing of many eggs as a result of

the high water level, which also had a negative impact on the overall rate of breeding success, especially this site that receives varying amounts of sewage every day more than its capacity.

In term of comparing the size of the eggs of Black-winged stilt in the study area and Al-Mallaha site, the difference was significant as the eggs in Al-Mallaha were larger than those in Al-Hadba. This is maybe due to the difference to the nature of the two sites, and Al-Mallaha is a coastal Sabkha (salt marsh) adjacent to the sea and most of the bird species are fed on fish either from within the sabkha or from the sea, which provides more salt and minerals than its availability in Al-Hadba treatment plant, which depends on the sewage and its organic components. This study is in accordance with the study of Adamou et al. (2009) that the egg size decreases with the gradual dehydration of the wetland and decreased quality and productivity of habitats.

The first record of the breeding Marble teal in Libya was in 2012 in Al-Mallaha (Etayeb et al., 2014), where this species is previously reported as a winter visitor, with a small number records during the period from 2005 to 2011 in three sites namely, Al-Mallaha, Ain Tawergha and Wadi Kaam (Etayeb et al., 2007; Hamza et al., 2008; Bourass et al., 2013). This study supported the nesting information of Marbled teals in Libya, although it was difficult to find the nests to investigate more details on breeding parameters such as clutch size, rate of hatching and overall breeding success, however, the study recorded an important number of chicks of

Figure 8. Chicks of Marbled Duck.

Figure 9. Chicks and adult of Little grebe.

this species.

For the nesting of Little grebe, this study observed only chicks after hatching and did not record any nests in the site; this is also due to the difficulty of access to nesting sites. However, the evidence was an observation of 20 of not able to fly chicks swimming with one of the parents (Fig. 9). The first record of nesting of this species in Libya was in Ain Tawergha wetland in 1965 (Bundy, 1976). Records of nesting of the Little grebe have been reported in several other regions, such as Benghazi, Al-Marj and Waw al-Namous during the years 2005 to 2010 (Isenmann et al., 2016).

The results of this study reported some species are listed in the Red List (IUCN), as well as one species listed in Annex II of the Regional Activity Center for Specially Protected Areas (RAC/SPA) as endangered species in the Mediterranean region (UNEP, MAP, RAC/SPA, 2003). The listing of these species as endangered is due to the decline in numbers or because of the destruction of their natural habitats that led to the decrease of their numbers. The existence of these species reflects the importance of the area as a good shelter for birds, as it contains many characteristics that make it a vital area for biodiversity in general and endangered species in particular, and therefore, it is needed to designate this site as important bird's area (IBA).

ACKNOWLEDGMENTS

The authors of this paper are grateful to the staff of Al-Hadba treatment plant and special thanks to Eng. Ali Gnieb for his assistance to achieve this work. Thanks to Mr. Adel Aburas (London, Wood green, UK) for the proofreading of the manuscript.

REFERENCES

- Adamou A.E., Kouidri M., Chabi Y., Skwarska J. & Bańbura J., 2009. Egg size variation and breeding characteristics of the black-winged stilt *Himantopus himantopus* in a Saharan oasis. Acta Ornithologica, 44: 1–7.
- Ashkanani A.M., 2013. Wetlands: ecosystems and economic importance. Journal of Our Environment. Environment public authority, Kuwait, 98: 34-35.
- Blackburn T.M., 1991. The Interspecific Relationship Between Egg Size and Clutch Size in Wildfowl. Auk,

- Vol. 108: 209-211
- Bourass E., Baccetti N., Bashimam W., Berbash A., Bouzainen M., De Faveri A., Galidan A., Saied A.M., Yahia J. & Zenatello M., 2013.Results of the seventh winter waterbird census in Libya, January-February 2011. Bulletin of the African Bird Club, 20: 20–26.
- Brown K.M. & Morris R.D., 1994. The influence of investigator disturbance on the breeding success of Ring-Billed Gulls *Larus delawarensis*, Colonial Waterbirds 17: 7–17.
- Bundy G., 1976. The Birds of Libya. British Ornithological Union check list. No. 1, B.O.U.
- Duma A., 2011. Biodiversity in constructed wetlands in Southern Sweden: Evaluation of new wetlands within the Tullstorp Stream Restoration Project. A bachelor of Science, Lund University, 47 pp.
- EGA-RAC/SPA waterbird census team 2012. Atlas of wintering waterbirds of Libya, 2005–2010. Imprimerie COTIM, Tunisia.
- Eman Benyezza, Tahani Shanan, Ali Berbash & Khaled Etayeb. 2017. The diversity of aquatic birds and breeding of some species in Al-Mallaha, Tripoli. Vogelwelt 137: 1–6.
- Etayeb K.S., Essghaier M.F., Hamza A., Smart M., Azafzaf H., Defos du Rau P. & Dlensi H. 2007. Report on an Ornithological Survey in Libya from 3 to 15 February 2007. EGA-AEWA-RAC/SPA-MAP-UNEP, 46 pp.
- Etayeb K.S., Yahia J., Berbash A. & Essghaier M.F.A., 2013. Ornithological importance of Mallaha wetland in Tripoli, Libya. Bulletin de la Société zoologique de France, 138: 201–211.
- Etayeb K.S., Yahia J., Berbash A., Wattier R. & Brochet A-L., 2014. First Breeding Evidence of Marbled Duck (*Marmaronetta angustirostris*) in Libya. Waterbirds, 37: 107–110.
- Hamza A., Saied A., Bourass E., Yahya J., Smart M.,
 Baccetti N., Defos du Rau P., Dlensi H. & Azafzaf H., 2008. Final report on a fourth winter ornithological survey in Libya, 20-31 January 2008.
 EGA-AEWA-RAC/SPA-MAP-UNEP, Unpublished Report.
- Howege H.M.,1998. The Structure of the Molluscan assemblages of Sea-grass beds in the Maltese Islands. Unpublished Ph. D.Thesis, University of Malta, 370 pp.
- Isenmann P., Hering J., Brehme S., Essghaier M., EtayebK., Bourass E. & Azafzaf H., 2016. Oiseaux deLibye Birds of Libya. SEOF, 302 pp.
- Jabbar S., 2009. The role of wetlands in water purification. Annour Center for Researches (Arabic article) http://www.alnoor.se/article.asp?id=42899
- Langston R.H.W., Liley D., Murison G., Woodfield E. & Clarke R.T., 2007. What effects do walkers and dogs have on the distribution and productivity of breeding

- European Nightjar Camrimulgus europaeus? Ibis 149: 27-36.
- Ludwing J.A. & Reynolds J.F., 1998. Statistical Ecology: a Primer on Methods and Computing The Wiley - Interscience Publication, New York., 337 pp.
- Mackintosh T. & Davis J., 2013. The Importance of Urban Wetland. In Workbook Formanaging Urban Wetland in Australia (Paul S. (Eds.) Sydney Olympic Authority. Australia.
- Moore P.D., 2008 WETLANDS, Revised Edition. Facts On File, Inc., 289 pp.
- Narushin V.G., 2005. Production, Modeling and Education; Egg Geometry Calculation Using the Measurements of Length and Breadth. Poultry Science, 84: 482-484.
- Paul S., 2013. Workbook for managing urban wetlands in Australia. 1st edn. (Sydney Olympic Park Authority), eBook available through www.sopa.nsw.gov.au/education/WETeBook/
- Picman J., 1988. Experimental study of predation on eggs of ground-nesting birds: effects of habitat and nest distribution. Condor, 90: 124-131.
- Preston F.W., 1974. The volume of an egg. The Auk, 91: 132-138
- Roger D.J., Steven A. Scott, Jennifer I. Albright & Sacramento R. 1998. The avifauna of constructed wetlands

- used for treating secondary wastewater at the Sacramento Regional Wastewater Treatment Plant. CVBC Bulletin, 1: 19-25.
- Sheldon D., Hruby T., Johnson P., Harper K., McMillan A., Granger T., Stanley S. & Stockdale E., 2005. Wetlands in Washington State. Volume 1: A Synthesis of the Science. Department of Ecology Publications, Olympia WA 98504-7600, 532 pp.
- Smart M., Essghaier M.F., Etayeb K., Hamza A., Azafzaf H., Baccetti N., Defos Du Rau P., 2006. Wetlands and wintering waterbirds in Libya, January 2005 and 2006. © Wildfowl and Wetlands Trust. 56: 172-191.
- Svensson L., Mullarney K. & Zetterstrom D., 2009. Collins Bird Guide. Harper Collins, London, 2 ed.
- Thorington K.K. & Bowman R., 2003. Predation rate on artificial nests increases with human housing density in suburban habitats. Ecography, 26: 188-196.
- UNEP MAP RAC/SPA, 2003. Action Plan for the Conservation of bird species listed in Annex II of the Protocol concerning Specially Protected Areas (SPAs), and Biological Diversity in the Mediterranean. Ed. RAC/SPA, Tunis. 80 pp.
- Zhao O.G. & Song J. (Eds.), 2004. Wetland Utilization and Protection in Chaina. Elsevier, Amsterdam.